FINAL EXAM (LENSTRA) - ANSWER KEY

PEYAM RYAN TABRIZIAN

(1)

$$
\mathbf{x}(t)=e^{-3 t}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

(2) (a) You really just do this by guessing! Start with 1 and x, and modify your guess!

$$
y_{1}(x)=1, \quad y_{2}(x)=x \quad y_{3}(x)=\frac{1}{16} e^{4 x}
$$

(b) Yes! The Wronskian is identically zero, hence nonzero at some point, and that is enough to determine linear independence!
(3)

$$
(D+1)\left(D^{2}+4\right)[y]=0
$$

I found this because e^{-x} corresponds to a root $r=-1$ and $\cos (2 x)$ corresponds to a root $r=2 i$. Hence I looked for a simple equation which has roots $-1, \pm 2 i$.

$$
y(t)=A e^{-t}+B \cos (2 t)+C \sin (2 t)
$$

(4) 54/Practice Exams/Lenstragraph1.png

54/Practice Exams/Lenstragraph2.png

54/Practice Exams/Lenstragraph3.png

(5)

$$
u(x, t)=\cosh (3 t) \sin (3 x)
$$

